
Using SAT for solving
package dependencies

Michael Schröder
Novell, Inc.

© February 22, 2008 Novell Inc.
2

What was wrong with the old solver

Much too slow
• with bug repositories solving could take several minutes

Complex code, many special cases, still some bugs
• solver could get stuck

Bad backtracking
• recommended packages treated as required

Bad diagnostics and suggestions if unsolvable
• “libfoo is required by package barbaz”

© February 22, 2008 Novell Inc.
3

The SAT Problem

SAT: Boolean satisfiability problem
• find a True/False assignment to all variables of a boolean

expression (AND/OR/NOT) so that it is True.
• NP complete

Normalization:
• (a | b | c) & (d | e | f) ... = TRUE

The (...) terms are called Rules consisting of literals
• a, b, c can also be negated: -a

Example:
• (a | b | c) & (-c) & (-a | c) = TRUE
• Solution: a = FALSE, b = TRUE, c = FALSE

© February 22, 2008 Novell Inc.
4

Advantages of SAT

Well researched problem
• many example solvers available (chaff, minisat...)

Very fast
• package solving complexity is very low compared to other

areas where SAT solvers are used

No complex algorithms
• solving just needs a couple of hundreds lines of code

Understandable suggestions
• solver calculates proof why a problem is unsolvable

© February 22, 2008 Novell Inc.
5

From dependencies to rules

“Requires: package” dependencies
• A requires B provided by B1, B2, B3
• Rule: (-A | B1 | B2 | B3)

“either A is not installed or one of B1, B2, B3 is installed”

“Conflicts: package” dependencies
• A conflicts with B provided by B1, B2, B3
• 3 Rules: (-A | -B1), (-A | -B2), (-A | -B3)

“either A is not installed or B1 is not installed”

“Obsoletes: package” dependencies
• treated as conflicts

© February 22, 2008 Novell Inc.
6

Making rules (cont.)

Unary rules:
• (-A) Package A cannot be installed

nothing provides a requirement, wrong arch, ...
erase request (job rule)

• (A) Package A must be installed
install request (job rule)

TRUE/FALSE values:
• TRUE: package will installed
• FALSE: package will not be installed/will be uninstalled

© February 22, 2008 Novell Inc.
7

Solver algorithms

Unit propagation
• A Rule is called unit, if all literals but one are FALSE
• If a Rule is unit, the remaining literal can be set to TRUE
• Example: (a | b | c) & (-c) & (-a | c) = TRUE

c is FALSE (unary rule)
(-a | c) is unit → -a is TRUE, a is FALSE
(a | b | c) is unit → b is TRUE

Algorithm:
• free choice: find some undecided variable, assign

TRUE or FALSE
• propagate all unit rules
• repeat until all variables are decided

© February 22, 2008 Novell Inc.
8

Unit propagation & dependencies

Requires rule (-A | B1 | B2 | B3)
• A, B1, B2 is FALSE → B3 must be TRUE

“If A is installed and all but one of the providers of a
requires dependency cannot be installed, the remaining
one must be installed”
→ adds packages to the install set

• B1, B2, B3 is FALSE → A must be FALSE
“If none of the provides of a required dependency can be
installed, the requiring package cannot be installed”
→ adds packages to the conflicts/erase set

Conflicts rule (-A | -B1)
• A is TRUE → B1 must be FALSE and vice versa

© February 22, 2008 Novell Inc.
9

Contradictions

Unit propagation can lead to a contradiction
• This means that a literal must be both TRUE and FALSE
• Example (-a | b) & (-a | c) & (-b | -c)

if solver sets a to TRUE → b, c is TRUE, c is FALSE!
• learn new rule from rules involved in contradiction
→ learned rule is (-a)

• undo last free assignment and continue solving
• if nothing to undo, problem was unsolvable

First implemented in 1996 in the GRASP solver.

© February 22, 2008 Novell Inc.
10

Dealing with free choices

Here is where you influence the quality of the solution:
• try to keep packages installed
• minimize number of packages to install

Algorithm
• if a package was installed before and is not in the conflicts

set, install it
• if a rule is not TRUE, but all of the negative literals are

FALSE, choose best of the undecided positive literals and
install the corresponding package

(-A | B1 | B2) A TRUE → choose B1 or B2
• do not install any other package (i.e. set all undecided

variables to FALSE)

© February 22, 2008 Novell Inc.
11

System policies

A policy rule defines what to do with installed packages
• must not be deinstalled or downgraded
• must not change architecture
• must not change vendor

Rule format:
• (A | A2 | A3 | A4)

A2/A3/A4 are the allowed update candidates (same name
and newer version or package with matching Obsoletes:
dependency)

© February 22, 2008 Novell Inc.
12

Reporting conflicts

If a problem turns out to be unsolvable, the solver
algorithm will return a set of rules that led to the conflict

• As a system with no rpms installed is conflict free, the
returned set of rules must contain at least one job rule or
policy rule

• A possible solution is to remove one of those rules, i.e.
remove a job (do not try to install package 'foo') or a
policy rule (allow deinstallation of package 'bar')

• Advantage: users understand those rules!

© February 22, 2008 Novell Inc.
13

Conclusion

Using SAT solver algorithms solve many of the problems the
old solver had

• speed: magnitudes faster
• reliable results
• extendibility: implementation of complex dependencies is

easy
• sensible error reports

We're also working on a new repository format that can be
processed much faster

• new dictionary based SOLV format

General Disclaimer
This document is not to be construed as a promise by any participating company to
develop, deliver, or market a product. Novell, Inc., makes no representations or warranties
with respect to the contents of this document, and specifically disclaims any express or
implied warranties of merchantability or fitness for any particular purpose. Further,
Novell, Inc., reserves the right to revise this document and to make changes to its content,
at any time, without obligation to notify any person or entity of such revisions or changes.
All Novell marks referenced in this presentation are trademarks or registered trademarks of
Novell, Inc. in the United States and other countries. All third-party trademarks are the
property of their respective owners.

This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike
2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by-
nc-sa/2.5/.

For other licenses contact author.

