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What was wrong with the old solver

Much too slow
• with bug repositories solving could take several minutes

Complex code, many special cases, still some bugs
• solver could get stuck

Bad backtracking
• recommended packages treated as required

Bad diagnostics and suggestions if unsolvable
• “libfoo is required by package barbaz”
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The SAT Problem

SAT: Boolean satisfiability problem
• find a True/False assignment to all variables of a boolean 

expression (AND/OR/NOT) so that it is True.
• NP complete

Normalization:
• (a | b | c) & (d | e | f) ... = TRUE

The (...) terms are called Rules consisting of literals
• a, b, c can also be negated: -a

Example:
• (a | b | c) & (-c) & (-a | c) = TRUE
• Solution: a = FALSE, b = TRUE, c = FALSE
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Advantages of SAT

Well researched problem
• many example solvers available (chaff, minisat...)

Very fast
• package solving complexity is very low compared to other 

areas where SAT solvers are used

No complex algorithms
• solving just needs a couple of hundreds lines of code

Understandable suggestions
• solver calculates proof why a problem is unsolvable
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From dependencies to rules

“Requires: package” dependencies
• A requires B provided by B1, B2, B3
• Rule: (-A | B1 | B2 | B3)

“either A is not installed or one of B1, B2, B3 is installed”

“Conflicts: package” dependencies
• A conflicts with B provided by B1, B2, B3
• 3 Rules: (-A | -B1), (-A | -B2), (-A | -B3)

“either A is not installed or B1 is not installed”

“Obsoletes: package” dependencies
• treated as conflicts
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Making rules (cont.)

Unary rules:
• (-A) Package A cannot be installed

nothing provides a requirement, wrong arch, ...
erase request (job rule)

• (A) Package A must be installed
install request (job rule)

TRUE/FALSE values:
• TRUE: package will installed
• FALSE: package will not be installed/will be uninstalled
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Solver algorithms

Unit propagation
• A Rule is called unit, if all literals but one are FALSE
• If a Rule is unit, the remaining literal can be set to TRUE
• Example: (a | b | c) & (-c) & (-a | c) = TRUE

c is FALSE     (unary rule)
(-a | c) is unit → -a is TRUE, a is FALSE
(a | b | c) is unit → b is TRUE

Algorithm:
• free choice: find some undecided variable, assign

TRUE or FALSE
• propagate all unit rules
• repeat until all variables are decided
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Unit propagation & dependencies

Requires rule (-A | B1 | B2 | B3)
• A, B1, B2 is FALSE → B3 must be TRUE

“If A is installed and all but one of the providers of a 
requires dependency cannot be installed, the remaining 
one must be installed”
→ adds packages to the install set

• B1, B2, B3 is FALSE → A must be FALSE
“If none of the provides of a required dependency can be 
installed, the requiring package cannot be installed”
→ adds packages to the conflicts/erase set

Conflicts rule (-A | -B1)
• A is TRUE → B1 must be FALSE and vice versa
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Contradictions

Unit propagation can lead to a contradiction
• This means that a literal must be both TRUE and FALSE
• Example (-a | b) & (-a | c) & (-b | -c)

if solver sets a to TRUE → b, c is TRUE, c is FALSE!
• learn new rule from rules involved in contradiction
→ learned rule is (-a)

• undo last free assignment and continue solving
• if nothing to undo, problem was unsolvable

First implemented in 1996 in the GRASP solver.
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Dealing with free choices

Here is where you influence the quality of the solution:
• try to keep packages installed
• minimize number of packages to install

Algorithm
• if a package was installed before and is not in the conflicts 

set, install it
• if a rule is not TRUE, but all of the negative literals are 

FALSE, choose best of the undecided positive literals and 
install the corresponding package

(-A | B1 | B2) A TRUE → choose B1 or B2
• do not install any other package (i.e. set all undecided 

variables to FALSE)
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System policies

A policy rule defines what to do with installed packages
• must not be deinstalled or downgraded
• must not change architecture
• must not change vendor

Rule format:
• (A | A2 | A3 | A4)

A2/A3/A4 are the allowed update candidates (same name 
and newer version or package with matching Obsoletes: 
dependency)
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Reporting conflicts

If a problem turns out to be unsolvable, the solver 
algorithm will return a set of rules that led to the conflict

• As a system with no rpms installed is conflict free, the 
returned set of rules must contain at least one job rule or 
policy rule

• A possible solution is to remove one of those rules, i.e. 
remove a job (do not try to install package 'foo') or a 
policy rule (allow deinstallation of package 'bar')

• Advantage: users understand those rules!
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Conclusion

Using SAT solver algorithms solve many of the problems the 
old solver had

• speed: magnitudes faster
• reliable results
• extendibility: implementation of complex dependencies is 

easy
• sensible error reports

We're also working on a new repository format that can be 
processed much faster

• new dictionary based SOLV format
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